Exercise 51

If $f(x) = x^2 + 10 \sin x$, show that there is a number c such that f(c) = 1000.

Solution

According to Theorem 7, x^2 and $\sin x$ are continuous at all numbers in their respective domains (all real numbers). By Theorem 4, $10 \sin x$ and $x^2 + 10 \sin x$ are also continuous at all numbers in their respective domains (all real numbers). Find a value of x for which f(x) is less than 1000, and find a value of x for which f(x) is greater than 1000.

 $f(30) \approx 890.12$ $f(35) \approx 1220.72$

f(x) is continuous on the closed interval [30, 35], and N = 1000 lies between f(30) and f(35). By the Intermediate Value Theorem, then, there exists a number c such that f(c) = 1000.