Exercise 51

If $f(x)=x^{2}+10 \sin x$, show that there is a number c such that $f(c)=1000$.

Solution

According to Theorem 7, x^{2} and $\sin x$ are continuous at all numbers in their respective domains (all real numbers). By Theorem 4, $10 \sin x$ and $x^{2}+10 \sin x$ are also continuous at all numbers in their respective domains (all real numbers). Find a value of x for which $f(x)$ is less than 1000, and find a value of x for which $f(x)$ is greater than 1000 .

$$
\begin{aligned}
& f(30) \approx 890.12 \\
& f(35) \approx 1220.72
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [30,35], and $N=1000$ lies between $f(30)$ and $f(35)$. By the Intermediate Value Theorem, then, there exists a number c such that $f(c)=1000$.

